LOW-TEMPERATURE PROCESS STEPS for REALIZATION of NON-VOLATILE MEMORY DEVICES
نویسندگان
چکیده
In this work, the low-temperature process steps required for the realization of nano-crystal non-volatile memory cells are discussed. An amorphous silicon film, crystallized using a diode pumped solid state green laser irradiating at 532 nm, is proposed as an active layer. The deposition of the subsequent functional layers (e.g., gate oxide) can be done using CVD and ALD reactors in a cluster tool. We show that a high nanocrystal density (Si-NC), required for a good functionality of the memory device, can be obtained by using disilane (Si2H6) or trisilane (Si3H8, known as Silcore®) as precursors for LPCVD instead of silane, at a deposition temperature of 325 °C. The nanocrystals are encapsulated with an ALD-Al2O3 layer (deposited at 300 °C), which serves as oxidation barrier. The passivation of the realized structure is done with an ALD-TiN layer deposited at 425 °C. In this work, we realized Al/TiN/Al2O3/Si-NC/SiO2/Si(100) multilayer floating-gate structures, where the crystallized amorphous silicon film was for the time being replaced by a mono-crystalline silicon wafer, and the gate oxide was thermally grown instead of a low-temperature PECVD oxide. The structures were characterized in terms of their performance as memory cells. In addition, the feasibility to use laser crystallization for improving the amorphous silicon films (prior to the gate oxide deposition) was explored. Index Terms — 3-D integration, ALD, CVD, nano-crystal, nonvolatile memory, laser crystallization
منابع مشابه
Design of a Low Power Magnetic Memory in the Presence of Process Variations
With the advancement in technology and shrinkage of transistor sizes, especially in technologies below 90 nm, one of the biggest problems of the conventional CMOS circuits is the high static power consumption due to increased leakage current. Spintronic devices, like magnetic tunnel junction (MTJ), thanks to their low power consumption, non-volatility, compatibility with CMOS transistors, and t...
متن کاملDendritic-Inspired Processing Enables Bio-Plausible STDP in Compound Binary Synapses
Brain-inspired learning mechanisms, e.g. spike timing dependent plasticity (STDP), enable agile and fast on-the-fly adaptation capability in a spiking neural network. When incorporating emerging nanoscale resistive non-volatile memory (NVM) devices, with ultra-low power consumption and high-density integration capability, a spiking neural network hardware would result in several orders of magni...
متن کاملProcess Step and Analysis of Bit Cost for Stacked Type MRAM with NOR Structured Cell
In this paper the process step and analysis of bit cost of stacked type MRAM with NOR structured cell has been newly described. For NOR structure 4 layer process is needed for realizing 1 layer memory cell compared with 2 layer for NAND structure. Estimated bit cost for stacked type NOR MRAM is very small, 0.04-0.4, compared with that of 1 layered NAND flash memory. This shows that not only NAN...
متن کاملA Long-range Computational Rfid Tag for Temperature and Acceleration Sensing Ap- Plications
In this paper, the design, realization, and experimental validation of a battery-assisted radio frequency identification (RFID) tag featuring sensing and computation capabilities are presented. The sensor-augmented RFID tag comprises an ultra-low-power microcontroller, temperature sensor, 3-axis accelerometer, non-volatile storage, and a new-generation I2C-RFID chip for communication with stand...
متن کاملNon-Volatile Memory: Emerging Technologies And Their Impacts on Memory Systems
For almost 30 years, computer memory systems have been essentially the same: volatile, high speed memory technologies like SRAM and DRAM used for cache and main memory; magnetic disks for high-end data storage; and persistent, low speed ash memory for storage with low capacity/low energy consumption requirements such as embedded/mobile devices. Today we watch the emergence of new non-volatile m...
متن کامل